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1 Abstract

Solar and stellar magnetic patches (i.e., magnetic fluxes that reach the surface

from the interior) are believed to be the primary sources of a star’s atmospheric

conditions. Hence, detecting and identifying these features (also known as mag-

netic elements) are among the essential topics in the community. Here, we apply

the complex network approach to recognize the solar magnetic patches. For this

purpose, we use the line-of-sight magnetograms provided by the Helioseismic and

Magnetic Imager on board the Solar Dynamic Observatory. We construct the mag-

netic network following a specific visibility graph condition between pairs of pixels

with opposite polarities and search for possible links between these regions. The
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complex network approach also provides the ability to rank the patches based on

their connectivity (i.e., degree of nodes) and importance (i.e., PageRank). The use

of the developed algorithm in the identification of magnetic patches is examined

by tracking the features in consecutive frames, as well as making a comparison

with the other approaches to identification. We find that this method could con-

veniently identify features regardless of their sizes. For small-scale (one or two

pixels) features, we estimate the average of 8% false-positive and 1% false-negative

errors.

2 Introduction

In Sun-like stars, the magnetic field is transferred from the inner layers to the

atmosphere as the buoyantly unstable field lines bundle into the convection zone,

stretch and twist along the path, and finally break through the surface. Such

a dynamo creates a complex magnetic environment at which new fluxes (i.e.,

magnetic patches) continuously appear and cancel on a star’s surface (Parker,

1955; Murray et al., 2006; Priest, 2014; Schmieder et al., 2014; Farhang et al.,

2018). Accordingly, the solar photosphere is covered by magnetic features of

various sizes and time scales ranging from tiny granular magnetic loops with

fluxes as small as 1016 Mx and lifetimes of a few seconds/minutes to active re-

gions (ARs) with fluxes up to 1023 Mx and typical lifetimes of several weeks

(Zwaan, 1985; Hagenaar et al., 1999; Wiehr et al., 2004; Cheung et al., 2007;

Tortosa-Andreu and Moreno-Insertis, 2009; Priest, 2014; Archontis and Syntelis,

2019). It is important to note that no explicit definition has been introduced for

magnetic features on the Sun’s surface, yet, the term is commonly used in referring

to flux concentrations and ephemeral regions (DeForest et al., 2007).

To this date, extensive research has been devoted to the observation and recognition

of solar magnetic patches and various routines have been developed aspiring this

purpose. These algorithms could principally be classified into threshold-based,

region-growing-based, and clustering-based segmentation methods, as well as

deep learning algorithms (e.g., Welsch and Longcope, 2003; McAteer et al., 2005;

Benkhalil et al., 2006; DeForest et al., 2007; Barra et al., 2008; Watson et al., 2009;

Barra et al., 2009; Zhang et al., 2010; Harker, 2012; Verbeeck et al., 2013; Bo et al.,

2022). (Hagenaar et al., 1999) used the curvature of the two-dimensional map of

the Michelson Doppler Imager (MDI) values of �LOS at the photosphere to de-

tect the small solar magnetic patches. The magnetic concentrations are then

determined through a pixel-clumping algorithm. (Parnell, 2002) proposed the
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Figure 1: An HMI cutout image of the Sun taken by the SDO at 23:58 on January 17,

2022. As manifested in this graphical illustration, an arbitrary pixel could connect

an opposite polarity (red asterisks) only if their magnetic intensities exceed the

absolute values of all the pixels placed in between them (marked with blue flags in

panel (b)). The absolute intensities of negative and positive fluxes are shown with

black and white bars in panel (c), respectively. A partial 3D visualization of the

magnetic connections that hold in the constructed network is displayed in panel

(d). The heights of connections represent their weights.
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Magnetic Clumping Associative Tracker (MCAT) method which identifies mag-

netic features of the quiet Sun by applying a threshold-based technique. MCAT

uses the intensity distribution of MDI images and implements a Gaussian ap-

proach (also see, Lamb and Deforest, 2003). Yet Another Feature Tracking Al-

gorithm (YAFTA) was designed in 2002 to detect both small and large-scale

magnetic patches (Welsch and Longcope, 2002). Given an initial intensity thresh-

old, YAFTA applies a gradient-based method, namely the Downhill method, to

extract the positive/negative field concentrations from magnetogram images of

MDI (DeForest et al., 2007).

In early 2000, with the extensive development of artificial intelligence techniques,

new generations of routines were developed to tackle the patch identification

problem (McAteer et al., 2005; Zharkov et al., 2005). (Qahwaji and Colak, 2005)

developed an algorithm using both the image processing techniques (i.e., the

morphological procedure, watershed transform, image enhancement routine, and

region-growing method) and the machine learning approach (i.e., the neural net-

work) to discern the solar disk borders in HU images of the Sun, eliminate the

limb-darkening effect, and track ARs. (Barra et al., 2008) introduced the Spa-

tial Possibilistic Clustering Algorithm that divides solar full-disk EUV images

into coronal Holes, ARs, and quiet regions via the Fuzzy Compact Clustering

Means (FCM), and Possibilistic Compact Clustering Means (PCM) algorithms.

(Kestener et al., 2010) performed a wavelet-based analysis on the magnetogram

images to detect solar ARs and studied the multi-fractal characteristics of these

features.

(Higgins et al., 2011) investigated ARs via a region-growing perspective based on

the magnetic field strength. (Caballero and Aranda, 2014) introduced a three-step

algorithm to identify magnetic patches from the EUV images of the Sun. In this

method, the images are first segmented into regions with similar properties (ac-

cording to their intensity histograms). Then, the segments are classified following

a hierarchical procedure. Finally, the results are validated through an optimization

problem. (Arish et al., 2016) developed an unsupervised segmentation routine

based on the Bayesian approach to distinguish between solar ARs and coronal

holes in EUV images. (Quan et al., 2021) employed a deep learning algorithm

to determine boundaries of the photospheric fluxes that appeared on the mid-

longitudes of the solar disk between 2010 and 2017. They applied a convolutional

neural network as well as the YOLO-V3 algorithm and compared the efficiency of

these methods.

Despite all the advances made in the investigation of solar atmospheric patches

over the past century, the true nature of their underlying mechanism is yet to be un-
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derstood (Cho et al., 2007; Bellot Rubio and Orozco Suárez, 2019; Farhang et al.,

2019, 2022). The study of the photospheric flux concentrations and their dynamic

evolution could provide new insight into the physical processes responsible for

the generation and transport of the solar/stellar magnetic field (DeForest et al.,

2007; Kosovichev, 2009). Furthermore, the detection and tracking of the surface

fields might even deliver forecasting capabilities (Nóbrega-Siverio et al., 2020).

Here, we apply the complex network approach and discuss the use of such a novel

perspective in the recognition of flux concentrations. The temporal evolution of

magnetic patches, as a crucial step in the identification of ARs, will be appraised

within the next article in the series.

The complex network approach has recently become of interest for studying so-

lar magnetic structures (Gheibi et al., 2017; Daei et al., 2017; Najafi et al., 2020;

Taran et al., 2022). This method provides a powerful tool for the identification

and examination of complex systems (Donges et al., 2009; Boers et al., 2015;

Kaki et al., 2022). Here, we use the magnetogram images to construct the so-

lar magnetic network and assess its dynamic properties. According to the network

theory, a graph (a set of edges and nodes as a mathematical representation of a net-

work) could describe the complex relations governing a system (Steinhaeuser et al.,

2010a,b). In such a schematic, nodes (vertices) may represent geographical re-

gions, or any other concept depending on the subject system and an edge (link)

indicates a physical or mathematical correspondence between two nodes. We

consider the pixel locations as our nodes, and links are established if some prede-

fined criteria are met. Generally, various types of graphs are possible depending

on the intended condition (e.g., correlation-based, visibility-based, etc.) and the

establishment of connections (i.e., simple, directed, or weighted). We show that

the complex network approach could detect and identify magnetic features with

great accuracy.

The remainder of this paper is organized as follows: we introduce the employed

data set in Section ??. The details of the developed method and performed analysis

are presented in Sections 4 and 5, respectively. The obtained results are discussed

in Section ??.

3 Data

Solar magnetic patches have been observed over decades by various land-based and

space-based instruments (see e.g., Miesch, 2005; Bellot Rubio and Orozco Suárez,

2019, and the references therein). The Solar Dynamics Observatory (SDO) mis-
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Figure 2: The identified magnetic patches of the HMI image of Figure 3(a). The

background magnetic threshold is considered 8, 12, 16, 20, and 24 G, from left to

right respectively.

sion, launched in 2010, is a well-equipped spacecraft that has provided high-quality

data in recent years. One of the instruments on board the SDO is the Helioseismic

and Magnetic Imager (HMI). This telescope is mainly designed to study the com-

plex evolution of the solar magnetic field and its origin in both the inner and outer

layers of the Sun (Scherrer et al., 2012).

HMI provides full-disk images in the absorption line FeI at 6173 Å, with the

spatial resolution of 1′′ and temporal resolution of 45 s (Schou et al., 2012). This

instrument registers Dopplergram images (solar surface velocity maps), contin-

uum filtergrams (wide spectrum images of the shadows), line-of-sight (LOS), and

vector magnetograms (magnetic field maps of photosphere) (Pesnell et al., 2011;

DeRosa and Slater, 2013). Data are available at Stanford University’s Joint Sci-

ence Operations Center (JSOC) database at jsoc.stanford.edu. The JSOC

catalog archives the data in different resolutions of 4096× 4096, 2048× 2048, and

1024 × 1024 pixels.

We use the HMI LOS magnetograms with the spatial sampling of 2.4′′ pixel−1

at 1024 × 1024 pixels with 45 s intervals. �LOS is the radial field component

at the disk center but includes non-radial components away from the disk center.

However, the LOS magnetic field variation is insignificant and neglected in cases

with the typical field-of-view of an AR.

4 The Magnetic Complex Network

We aim to construct the magnetic complex network and evaluate its utility in the

recognition of solar photospheric patches. Applying this approach could improve

our understanding of the Sun’s atmospheric events and their origins. The first step

to establishing a network is defining nodes and edges. We consider each pixel of

6
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the HMI image as a node, and the existence of a link between each pair of nodes

is verified based on the visibility graph condition:

�i1,j1, �i2,j2 > �c, (1)

where �i1,j1 and �i2,j2 are the unsigned magnetic intensities (absolute values of

�LOS) of any two arbitrary pixels with different polarities, and �c corresponds to

the absolute values of all pixels placed along the line joining the two pixels. For

example, in the HMI cutout image of Figure 1, the two pixels (red asterisks in

panels a and b) connect only if their magnetic intensities exceed the values of

those pixels laid on the line (panel c). Note that the likelihood of a link must

be examined only between nodes with opposite polarities (panel d). A physical

approach to constructing a magnetic network must focus on connections between

positive and negative regions. In the remainder of this paper, we show how the

graph theory conveniently accomplishes identifying magnetic patches.

5 The Network’s Properties

Having the magnetic network constructed, the calculation of its parameters is

required for further investigations. To this purpose, we first calculate the adjacency

matrix that contains information on the graph’s nodes (i.e., pixel locations) and

edges (i.e., connectivity). Generally, for a magnetogram image of size<×= pixels,

there are # = < × = nodes over which the connectivity must be checked. The size

of the adjacency matrix for such a graph is #2. Introducing a threshold for the

background field could practically decrease the execution time as it removes some

of the nodes and shrinks the adjacency matrix. Generally, thresholds higher than

12 G are appropriate (see e.g., Shokri et al., 2022, and the references therein).

For a simple undirected and unweighted graph, the adjacency matrix is a symmetric

array with elements equal to either 1 or 0. These values indicate whether or not

a connection is established between nodes. However, in directed networks, the

matrix’s elements could adopt either positive or negative signs as a representation

of the entry or exhaust of the edges into the nodes. In the case of weighted

networks, there are no limitations, and the adjacency matrix could have any value

(rather than binaries) manifesting the importance of the established connections.

We construct a directed and weighted graph to study the solar magnetic patches. We

consider the incoming/outgoing magnetic intensities as the weight of connections.

Specifically, if a connection is established between pixels 8 and 9 , then �i,j equals

to �LOS of pixel 8, and �j,i equals to �LOS of pixel 9 . In case of no connectivity
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�i,j would be zero. Also, �i, i is considered to be zero, due to the nature of the

magnetic network. The next step is to investigate the graph’s properties (e.g.,

degree distribution and PageRank).

The degree distribution specifies how many effective connections are established

in a network by measuring the number of nodes’ neighbors. By definition, the

degree of the 8-th node of a graph is:

:i =

#∑

j=1

�i,j, (2)

where � is the adjacency matrix (Donges et al., 2009).

Further to the degree distribution, we calculate the PageRank and assess its ap-

plicability in the recognition of magnetic patches. The PageRank, Ai, illustrates

the importance (popularity) of a node based on the structure of links in a graph

(Sheng et al., 2020):

Ai =
1 − 3

#
+ 3

∑

j∈#

Aj

:j

. (3)

In this equation, the damping factor 3 is a constant and could adopt any value

between 0 and 1. But usually, it is considered to be 0.85 (Brin and Page, 1998;

Mohammadi et al., 2021).

In the next section, we discuss these properties in more detail and examine their

usefulness in the detection of magnetic patches. We show that the map of degree

distribution and PageRank could distinguish the borders of photospheric fluxes on

the Sun’s surface.

6 Results and discussions

The solar magnetic activity could be investigated by detecting magnetic structures

as they emerge, evolve, and annihilate on the surface. Following this objective, we

introduced a new algorithm based on the complex network approach to identify

the photospheric magnetic patches from HMI LOS images (the relevant MATLAB

and Python packages are available on GitHub, see Data Availability Section). The

applicability and efficiency of the developed algorithm are assessed through the

examination of various data sets and the evaluation of the networks’ properties

(i.e., degree distribution and PageRank). These properties are found to profitably

identify magnetic patches from their environment.

8
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Figure 3: (a) The HMI cutout image of an AR recorded by the SDO at 23:58 on

January 17, 2022. The selected window size is 75 × 75 pixels. The complex

network is constructed considering a threshold of about 20 G. (b) The map of the

degree distribution; (c) Identified magnetic patches; (d) The PageRank map.

Considering a minimum background threshold for �LOS could affect the execution

time and the detection of small patches. Figure 2 shows an HMI cutout image

of an AR (NOAA 2929), registered at 23:58 on January 17, 2022. The Figure

presents the identified magnetic islands for various choices of threshold i.e., 8, 12,

16, 20, and 24 G. Seemingly, lower thresholds result in more intricate outcomes.

Considering that the inbred HMI magnetogram noise level hinges on the instrument

data product and the area of interest in the photosphere, different thresholds are

applicable for various studies

Figure 3 shows an HMI cutout image (panel a) and the map of the network’s degree

distribution and PageRank (panels b,d respectively). Magnetic features are clearly

visible on the map of the degree distribution. We acknowledge that the original

maps have varying shades due to the wide range of plausible values for the degrees.

However, a uniform color scheme is applied to all the degree distribution maps to

render a better manifestation of borders. We obtain that higher magnetic fluxes

result in higher values for PageRank. A similar analysis is performed on the HMI

image of a quiet region recorded on July 12, 2021 (Figure 4). Again, we observe

that the visibility graph approach could detect the magnetic patches conveniently.

Borders of the identified features could be determined by applying any arbitrary

9
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Figure 4: (a) The HMI cutout image of a quiet region recorded by the SDO at 23:59

on July 12, 2022. The selected window size is 113 × 101 pixels; The complex

network is constructed considering a threshold of about 18 G. (b) The map of the

degree distribution; (c) Identified magnetic patches; (d) The PageRank map.

region-growing method. Here, we apply the Downhill algorithm and label the

patches based on their connectivity, i.e., summation over all nodes’ degrees within

each region (Figures 3 and 4, panel c). This algorithm is basically utilized on HMI

images for the recognition of photospheric features, but here, we use it on both the

distribution maps and HMI images to extract the borders and evaluate the complex

network’s performance, respectively.

Given an initial threshold, Downhill divides the identified regions into smaller

sub-regions. Figure 5 illustrates the impact of the threshold on the size of patches

for two active and quiet regions, panels (a) and (b), respectively. The choice of

the threshold manifests no significant effect on the patch sizes in an AR (up to 150

G). However, the threshold demonstrates a more profound influence over the quiet

Sun, as higher thresholds provide less accurate determinations by neglecting small

features. This could particularly affect statistical studies of magnetic patches and

elaborate precautions need to be taken in this regard.

A comparison between the Downhill identification algorithm and the complex

magnetic network approach is made. Figure 6 displays the frequency-size dis-

tribution of patches identified by the Downhill method applied to the network

distribution maps (red line) and to the HMI images (blue line) for an AR and a

10



0 50 100 150

Area (pixel2)

0

20

40

60

80

100

120

140

160

Threshold = 18

Threshold = 25

Threshold = 45

Threshold = 70

Threshold = 100

Threshold = 150

Threshold = 200

Threshold = 300

Threshold = 400

Threshold = 500

0 100 200 300 400 500 600 700

Area (pixel2)

-10

0

10

20

30

40

50

60

70
F

re
qu

nc
y

Threshold = 18

Threshold = 25

Threshold = 45

Threshold = 70

Threshold = 100

Threshold = 150

Threshold = 200

Threshold = 300

Threshold = 400

Threshold = 500

Figure 5: Patch sizes for various choices of threshold applying the Downhill

algorithm: (a) in an AR; (b) in a quiet Sun.

0 100 200 300 400 500 600 700

Area (Pixel 2)

0

10

20

30

40

50

60

70

80

90

F
re

q
u

en
cy

Downhill

Visibility Graph

0 20 40 60 80 100 120 140 160

Area (Pixel 2)

0

20

40

60

80

100

120

140

Downhill

Visibility Graph

(a) (b)
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line) for an AR (a) and a quiet Sun (b).
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quiet Sun at a given threshold. The results based on the network algorithm are

well-matched with the downhill method.

The solar surface is covered by magnetic patches and the atmospheric struc-

tures/phenomena have their origins in these regions. Nonetheless, not all the

patches share the same impact on this environment. Parameters such as size,

lifetime, and magnetic field strength are likely to regulate the effectiveness (im-

portance) of magnetic patches. Accordingly, in traditional algorithms, the key

features were characterized based on these parameters. Alternatively, we propose

the examination of magnetic connectivity. The complex network approach pro-

vides the ability to rank the magnetic patches based on their affinity (i.e., degree of

nodes) and importance (i.e., PageRank) by searching for connections between op-

posite polarities. A technical differentiation exists between the present perspective

and actual magnetic connections, i.e., field lines. However, there is a possibility

of discovering commonalities between the two. Figure 7 presents the magnetic

features ranked based on their overall degrees and total magnetic fields. Indeed,

further investigations could provide a better understanding of this perspective and

its efficiency in studies of atmospheric events.

Besides comparing with Downhill, we track the identified patches in consecutive

frames to evaluate the efficiency of the network approach particularly in detecting

the small-scale (one or two pixels) patches. An event is most likely non-noisian

if it appears in two or more successive images. Figure 8 shows an example of

three consecutive HMI magnetograms with a time cadence of 45 s versus their

identified patches. Out of 74 identified small-scale features detected in the middle

magnetogram, 9 features are not detected in the left or right magnetograms (shown

with red arrows). Performing a similar analysis on more frames gives an average

of 8% false-positive error in the detection of small-scale features. Such features

are either noise or concise lifetime patches that cannot be confirmed using the HMI

data with 45 s cadences. Furthermore, we observe an average of 1% false-negative

errors. The false-negative error indicates the failure in the identification of small-

scale patches within an image which appeared in the preceding and following

magnetograms. These features are primarily non-noisian events.

One might think of the complex network approach analogous to any other flux-

based identification algorithm. Such a misinterpretation might be inspired by the

fact that the networks are constructed based on magnetic intensities. However, the

measure of the correlation between the magnetic field and the degree of each node,

∼ 0.44, suggests a clear discrepancy. Furthermore, other approaches to identi-

fication usually confront some restrictions. These limitations mainly regard the

size of magnetic patches, the number of frames required to acknowledge a feature,

12
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Figure 7: The identified magnetic patches ranked by numbers according to: (a)

the total degree of the nodes; (b) the average degree of the node for pixels (divided

by patch size); (c) the total magnetic field; (d) the average magnetic field for pixels

(divided by patch size).
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Figure 8: Consecutive HMI magnetograms with the cadence of 45 s (top panels)

together with the identified features based on the network approach (bottom pan-

els). The red arrows in the middle magnetograms point at the identified small-scale

(one or two pixels) events that did not appear in the left or right panels. The patches

with green arrows correspond to the small-scale events of the corner panels that

were not detected in the middle frame.

and the choice of the intensity threshold (Hagenaar et al., 1999; Parnell, 2002;

Welsch and Longcope, 2002; Qahwaji and Colak, 2005; Caballero and Aranda,

2014). The complex network approach successfully identifies small-scale patches

(even those as small as one pixel). Yet, the optional choice of background intensity

seems to play a major role in the accuracy of the identifications (Figure 2).

The dependency of the present method on the predefined threshold intrinsically

differs from the previous algorithms. The susceptibility of other approaches

to identification to noise and misidentifications mostly originates in the applied

region-growing algorithm. On the other hand, the relatively unfavorable (noisy-

like) identification of the visibility graph method at low thresholds corresponds to

the small fragments of the photospheric magnetic carpet (Figures 1 d and 2). In

other words, the noisy-like features might be of interest depending on the intended

study and various levels of accuracy are convenient.

We performed the analysis on several other data sets and obtained that the pro-

14



posed visibility-graph-based algorithm serves as an efficient and reliable means

of identification for solar magnetic patches. The routine remarkably succeeds in

the fast recognition of magnetic features in cutout images. As the next step, we

intend to investigate the temporal evolution of the small and large solar magnetic

patches via this algorithm. We aim to discern noise from tiny features and track

the sunspot regions.

Data Availability: The developed MATLAB and Python packages for Identifying

Solar Magnetic Patches (ISMP) are available at

https://github.com/Zahra-Tajik/ISMP.git.
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acknowledge the use of the YAFTA algorithm.
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